
Abstract. The full capacity of contemporary parallel
computers can, in the context of iterative ab initio
procedures like, for example, self-consistent field (SCF)
and multiconfigurational SCF, only be utilized if the
disk and input/output (I/O) capacity are fully exploited
before the implementation turns to an integral direct
strategy. In a recent report on parallel semidirect SCF
http://www.tc.cornell.edu/er/media/1996/collabrate.html,
http://www.fp.mcs.anl.gd/grand-challenges/chem/non-
direct/index.html it was demonstrated that super-linear
speedups are achievable for algorithms that exploit scal-
able parallel I/O. In the I/O-intensive SCF iterations of
this implementation a static load balancing, however, was
employed, dictated by the initial iteration in which inte-
gral evaluation dominates the central processing unit
activity and thus determines the load balancing. In the
present paperwe present the first implementation inwhich
load balancing is achieved throughout the whole SCF
procedure, i.e. also in subsequent iterations. The im-
proved scalability of our newalgorithm is demonstrated in
some test calculations, for example, for 63-node calcula-
tion a speedup of 104 was observed in the computation of
the two-electron integral contribution to the Fockmatrix.

Keywords: Parallel – Input/Output – Semidirect –
integral direct

1 Introduction

The availability of efficient parallel ab initio algorithms
has been limited by the absence of high-level parallel
utility libraries which address the specific requirements
of computational chemistry. Standard message passing

libraries, like MPI, PMV, or Linda, are too low-level
and not really suitable to support the complex problems
of memory disk management of ab initio electronic
structure algorithms. Additionally, the concepts of
distributed versus. shared memory implementations
have complicated the options for program developers
in their search for an algorithm suitable for distributed
and shared memory architectures.

The computational chemistry community has been
aware of these shortcomings in industry standards for
some time and started to develop a suitable platform for
parallel program development on its own. The Global
Array (GA) toolkit, developed by Pacific North
National Laboratory (PNNL) and Argonne National
Laboratory (ANL) in collaboration with others, is the
result of such efforts [1,2]. The GAs solve the problem
related to, for example shared and distributed memory
architecture such that the application programmer can
employ the very same algorithm and computer imple-
mentation on both architectures. To reduce the time
invested in parallel program developments the use of
portable utilities is a necessity. The availability of the
GA toolkit has been instrumental to subsequent pro-
gress in developments of parallel electronic structure
codes as manifested in the NWChem project [3], the
superlinear scaling MP2 implementation [4] and parallel
implementation efforts in program packages like
Columbus [5], MOLPRO [6], and MOLCAS [7], to
mention a few.

Another project pushed by PNNL and ANL is the
development of high-level utilities for parallel input/
output (I/O) [8]. The ChemIO library, which address
needs specific to ab initio electronic structure methods, is
a high-level software interface to disk resident arrays,
exclusive file access and shared files. This new utility
offers new possibilities for program development which
so far were closed to those with limited knowledge on
low-level features of different parallel architectures.

Implementations of parallel electronic structure codes
have until recently avoided the use of secondary storage
devices. This has been a manifestation of both lack of
suitable tools for transparent implementation on various

Contribution to the Björn Roos Honorary Issue

Correspondence to: Roland Lindh
e-mail: roland.lindh@teokem.lu.se

Semidirect parallel self-consistent field: the load balancing problem

in the input/output intensive self-consistent field iterations

Roland Lindh1, Jesper Wisborg Krogh1, Martin Schütz2, Kimihiko Hirao3

1 Department of Theoretical Chemistry, Chemical Center, P.O.Box 124, 221 00 Lund, Sweden
2 Institut für Theoretische Chemie, Universität Stuttgart Pfaffenwaldring 55, 70569 Stuttgart, Germany
3 Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Received: 2 June 2002 / Accepted: 3 September 2002 / Published online: 6 October 2003
� Springer-Verlag 2003

Theor Chem Acc (2003) 110: 156–164
DOI 10.1007/s00214-003-0469-8



hardware platforms and poor I/O characteristics. For
Hartree–Fock self-consistent field (SCF) and Kohn–
Sham density functional theory (KS-DFT), two of the
most commonly used electronic structure methods in
computational chemistry, this implied the use of integral
direct algorithms [9, 10] for parallel implementations. In
the conventional SCF/KS-DFT programs the two-elec-
tron repulsion integrals are computed once, stored on
disk, and later retrieved from disk in each iteration for
contraction with the new density matrix in the calcula-
tion of the new Fock matrix. In integral direct ap-
proaches, on the other hand, the two-electron repulsion
integrals are computed on-the-fly as they are needed in
each iteration. The computational burden of the latter
hence appears to be considerably higher. However, by
virtue of efficient prescreening techniques which exploit
the sparsity of the one-particle density, the average
Central Processing Unit (CPU) time per iteration of a
direct SCF/KS-DFT calculation is smaller than that of
evaluating all two-electron repulsion integrals (per-
formed once) in a conventional calculation. This is
particularly true in the context of incremental Fock
matrix construction [11]. On the other hand, since a
typical SCF/KS-DFT calculation usually converges in
about a dozen iterations the breakeven point of a con-
ventional single-node calculation and a parallel integral
direct calculation occurs for 2-4 nodes depending on the
case (provided that it is possible to store all integrals on
disk).

This situation is especially annoying for the middle
range of calculations, where it is still possible to perform
the conventional computation on a high-end work sta-
tion much faster than on a small standard parallel
computer (lower than 4–8 nodes). However, a recent
preliminary report on a parallel semidirect SCF imple-
mentation (a hybrid of conventional and integral direct
SCF [11]) implementation demonstrated that this no
longer need be the case [12]. Using the ChemIO utilities
scientists at the ANL implemented the semidirect ap-
proach for a hardware configuration with scalable I/O
[13]. In the initial iteration each node writes all or a
subset of the two-electron repulsion integrals which it
computes to a local disk. In subsequent iterations these
integrals are retrieved from the local disk as they are
needed. While the distribution of the integrals to process
on each node can be modified to achieve almost perfect
parallelization, in the first iteration the same distribution
has to be fixed in all subsequent iterations: a particular
node processes the very same set of integrals that it
computed initially, which now is available on its local
disk. In subsequent iterations the computational work is
therefore much less balanced. Nevertheless, with this
limitation in load balancing of the I/O-intensive SCF
iterations superlinear scaling was observed. Hence, the
loss of a proper load balancing in subsequent iterations
is more than offset by the fact that large fractions of the
two-electron repulsion integral distribution only need to
be computed once.

The present paper describes a natural extension of
the parallel semidirect SCF implementation in which
efficient load balancing is achieved throughout the
whole iterative procedure. This is achieved by

employing the idle time of the nodes in subsequent
iterations to compute and store integral sets on the
local disk which later on can be processed if the node
otherwise would become idle. This report is divided
into two sections, Implementation strategy which
describes the characteristics of our parallel distributed
I/O semidirect SCF implementation, and Performance
assessments and discussions, where the performance of
the implementation is discussed.

2 Implementation strategy

The implementation described here is an modification
of our integral direct SCF code in the MOLCAS
program package version 5.2. The integral evaluation
is based on the original Rys–Gauss codes as imple-
mented in the integral code SEWARD [14]. The SCF
code is implemented with differential densities and a
quasi–Newton update scheme [15, 16, 17]. Densities are
desymmetrized and contracted with the atomic orbital
(AO) integrals to form unique intermediate AO Fock
matrices. These matrices are transformed on-the-fly to
the symmetry adapted orbital (SO) basis. All symmetry
treatment is handled via the double coset decomposi-
tion procedure [18, 19] already implemented in MOL-
CAS for symmetry treatment of SO integrals, gradients
[20], and force constants[21]. The parallelization of the
SCF/KS–DFT code discussed in the present text only
applies to the Fock matrix construction.

2.1 Parallel integral direct SCF

The parallel implementation of the integral direct SCF/
KS-DFT is straight forward [22] in the context of a
replicated data implementation (each node has a
private copy of the density and Fock matrices). A
batch of two-electron integrals is computed and traced
with the one-particle density in the construction of the
Fock matrix. At the start of each SCF iteration the
density matrix is broadcast to all participating nodes
and at the end of the iteration the final Fock matrix is
constructed as a global reduction of the partial Fock
matrix as residing on each node. In between, the
independent tasks of integral computation and con-
traction with the density matrix for a particular shell
quadruplet are distributed dynamically on the nodes to
maintain load balancing. In our case, load balancing is
achieved as follows:

1. A globally uniform list (each node has a private copy),
a so-called task list, is constructed in which the
individual calculations of integrals over shell quadru-
plets are grouped together in tasks. The number of
such tasks should typically be significantly larger than
the number of nodes employed in the calculations.
Furthermore, we vary the number of shell quadruplets
in the tasks such that the first ones are the largest
and the last ones are of a rather modest size. A
large task includes several shell quadruplets (ranging
from just a few to several thousands depending on

157



the size of the calculation), while a small task might
only contain an individual shell quadruplet. The
process of defining the number and sizes of the tasks
is a dynamic process which depends on the number of
CPUs and shell quadruplets.

2. A list unique to each node, a so-called private priority
list, is constructed describing the order in which a
specific node or processor should execute all tasks.
Such priority lists were introduced in the context of
our scalable parallel MP2 program [6] in order to
exploit data locality (i.e., minimizing communica-
tions) of individual tasks. Typically the list is such
that tasks with a large number of shell quadruplets to
process appear before smaller tasks.

3. A global reservation list, a distributed vector, is
initiated. This list is accessible to all nodes and
individual nodes make reservations of tasks on this
list via the read-and-increment utility of the GA
toolkit. Any node which reads the value of the
initiated list is allowed to process that particular task.
Since the private priority lists are different on each
node (for the original parallel MP2 program this was
a natural consequence of exploiting data locality),
congestion during task reservation can be avoided to
a large extent.

As the work of an iteration is proceeding the nodes
move down the task list processing smaller and smaller
tasks. By varying the number of tasks and their relative
size almost perfect parallelization in the Fock matrix
construction step of the SCF/KS–DFT implementation
is achieved. Once a new iteration is started the global
reservation list is reinitiated and the nodes will again
start to try to make reservations, and there is no
restriction that the a particular task is processed by a
particular node.

2.2 Parallel semi-direct SCF

The semidirect parallel SCF implementation is a simple
extension of the procedure just described, augmenting
the procedure of handling the private priority list.
During the first iteration the implementation is similar
to the parallel integral direct SCF/KS-DFT with two
exceptions:

1. The integrals are stored on the local disk of the node.
2. Those tasks which were executed by an individual

node are now booked in the augmented private
priority list of that particular node.

2.2.1 Static load balancing

In the case of static load balancing the subsequent
iterations are commenced such that each node only
processes those tasks which were booked in the aug-
mented private priority list [13]; hence, no reservation
procedure is needed for these iterations. The computa-
tional burden of specific tasks, however, is different to that
during the first iteration (some integrals are now read from
disk rather than being evaluated, prescreening will also

Fig. 1. The C24 fullerene

Fig. 2. The speedup for the direct self-
consistent field (SCF) calculations on the
C24 ‘‘Fock build’’ are the speedups for
two-electron integrals contribution to the
Fock matrix, and ‘‘Total’’ are the speedups
for the total SCF time

158



affect the computational load). Hence, ideal load balanc-
ing cannot be expected for such an approach, and the
imbalance becomes even more severe when the number of
nodes is increased (for the same chemical system).

2.2.2 Dynamic load balancing

In order to remedy this situation, i.e., to achieve a well-
balanced work distribution also during the I/O intensive
subsequent iterations, we suggest that an individual
node, after processing all tasks for which it had integrals
on disk, should reserve a task anyway and process it. This
of course implies that two-electron repulsion integrals are
recomputed in the spirit of an integral direct approach,
even though they might be stored already on some other
(nonlocal) disk. However, since this happens late in the
iterative work the size of the task is small and the

associated CPU time in relative terms is small as well.
The alternative would be to leave the node idle.
Furthermore, since the computed integrals are appen-
ded to the local disk the computational expense can
be amortized over several iterations if the tasks on
subsequent iterations are processed by the same node.
This is not an unlikely event. For the node which
previously executed the task the local integral file is now
truncated. If this node, for some reason, later on becomes
idle while there are still tasks to be reserved and executed
it will preform as just mentioned previously, i.e., reserve a
not yet executed task and store the recomputed integrals
on its local disk. The procedure as we described here will
allow tasks to migrate to idle nodes and after a few
iterations a steady-state or near steady-state will appear
as a manifestation by a near perfect load balancing in the
I/O dominated iterations. We have experimented with

Fig. 3. a A comparison between the relative
timings for the Fock build using the static
and dynamic load balancing and b the idle
time during the formation of the two-electron
contribution to the Fock matrix as an
function of the number of nodes employed in
a calculation on the C24 molecule using a
cc-pVDZ basis

159



various approaches in selecting the tasks which can be
‘‘stolen’’ by an idle node. One could either let the node
take a batch from the start of the remaining task list, i.e.
try to take a task which is as large as possible, or take one
from the very end. The major difference between the two
approaches is that the former will cause a loss of several
tasks in the truncation of the local integral disk of the
‘‘losing’’ node, whereas the latter approach will only
truncate the local integral disk from the very end of the
file. It is our experience that the optimum is the latter.

2.2.3 Disk-based versus in-core semidirect SCF

The implementation described in this paper is best
suited for a parallel computer with scalable I/O.
Standard shared memory parallel installations are not

typically configured with scalable I/O and thus are not
well suited to efficiently run the current algorithm.
However, this problem can to some extent be avoided
by offering a simple in-core version of the disk-bound
algorithm. Here this is simply achieved by increasing
the size of the I/O buffers and inhibiting I/O requests.
It is shown later that the in-core implementation offers
benefits which can also be utilized on distributed
parallel machines.

3 Performance assessment and discussions

In this section we assess and compare the performance of

1. The fully-direct SCF method.

Fig. 4. a A comparison between the relative
timings for the Fock build using the static
and dynamic load balancing and b the idle
time during the formation of the two-electron
contribution to the Fock matrix as an
function of the number of nodes employed in
a calculation on the C24 molecule using a
cc-pVTZ basis

160



2. The disk-bound semidirect SCF method without and
with dynamic load balancing.

3. The in-core version of the semidirect SCF method.

The performance assessments are based on the elapsed
times for the construction of the two-electron part of
the Fock matrix (Fock build). All test calculations
were restricted to calculations on the C24 fullerene
molecule (Fig. 1) using the cc-pVDZ and cc-pVTZ basis
sets of Dunning [23] and using no symmetry. The test

calculations were performed on a 64-processor Beowulf
cluster sited at the University of Lund. Each node is
equipped with a 1.6 GHz AMD XP 1900+ CPU
mounted on an Asus A7V266-E motherboard, local 40
GB Western Digital UDMA/100 disks, and 1 Gb DDR
SDRAM main memory [16]. In all calculations the local
disc storage was limited to 2000 MB per node.

The measured speedups for the fully direct SCF are
plotted in Fig. 2. The graph shows the expected scal-
ing (slightly worse than linear) with the number of
nodes. For example, for the cc-pVTZ basis we observe
a speedup of 57.8 for 63 nodes (86403s and 1498s for
1 and 63 nodes, respectively), i.e., an efficiency of
99.86% per node:1 The efficiency decreases as expected
on going to the smaller basis set, for which we observe
a speedup of 26.1 on 63 nodes (5072s and 194s for
1 and 63 nodes, respectively), or an efficiency of
98.61% per node. The performance documented here
demonstrates that the computation of the two-electron
integrals dominates the SCF time and that the fully
direct parallel implementation as described in the pre-
vious section is efficient.

The performance of the semidirect SCF with the
static and the dynamic load balancing is compared in
Figs. 3 and 4. What we expect to see here is that the
potential imbalance of the I/O-intensive iterations
eventually destroys the performance of the static load
balancing as the number of nodes is increased. Two
different sets of timings corresponding to a threshold
of storing two-electron integrals to disk of 1:0� 10�6

and 1:0� 10�8 are used, respectively. That is, the sec-
ond set of calculations should have more two-electron
integrals on disk, which should extend the superlinear
scaling range compared to the set with the higher
threshold. The data demonstrate in a vivid way the
ultimate breakdown of the static load balancing
approach as the parallelization is pushed further by
increasing the number of nodes used in the calculation.
This occurs, of course, earlier for the smaller basis set,
for which we note a relative performance enhancement
for the dynamic approach compared to the static ap-
proach of a factor of about 2.5 using 63 nodes. The
relative performance improvement of the larger basis
set is 1.6 at 63 nodes. The ratio is expected to increase
with an increased number of nodes. It is also noted
that the integral threshold makes a difference. Naively
is seems that the more integrals which are written to
disk the better. There is, however, a limit at which
further reduction in the integral threshold only induces
nonproductive I/O on low-value integrals which the
direct approach avoids by the prescreening technique.
From Figs. 3 and 4 it is evident that while the idle time
in the static approach increases worse than linearly
with the number of nodes, the dynamic approach
demonstrates an almost constant idle time.

In passing we mention our experience with different
approaches to what tasks should be ‘‘stolen’’ in the
dynamic approach. We suggest ‘‘stealing’’ tasks from
the end of the task list, i.e., to take over tasks as small

Table 1. The speedup for building the Fock matrix for semidirect
calculations as a function of the number of nodes. Numbers are
tabulated for two disk-bound cases with a maximum of 2000 MB
integrals written to each local disk and an input/output (I/O) buffer
of 512 kB in combination with a threshold for storing two-electron
integrals of A 1:0� 10�6 and B 1:0� 10�8, and C for one in-core
case with a memory for storing integrals set to 900 MB per node.
All numbers refer to calculations with the cc-pVDZ basis

Nodes Static Dynamic

A B C A B C

1 1.0a 1.0b 1.0c 1.0d 1.0e 1.0f

2 2.1 2.0 2.1 2.0 2.0 2.5
4 5.8 5.9 7.5 5.8 5.9 7.5
8 10.7 10.9 13.9 10.9 11.2 14.0
16 13.8 11.6 16.7 19.1 19.8 23.8
24 13.7 14.0 15.5 22.3 21.8 27.0
32 17.3 17.1 20.1 26.0 26.4 30.2
48 16.7 17.3 19.8 29.3 29.9 36.9
63 13.8 13.4 14.7 26.3 31.0 36.9

aElapse time 3605 s
bElapse time 3586 s
cElapse time 4135 s
dElapse time 3610 s
eElapse time 3586 s
fElapse time 4125 s

Table 2. The speedup for building the Fock matrix for semidirect
calculations as a function of the number of nodes. Numbers are
tabulated for two disk-bound cases with a maximum of 2000 MB
integrals written to each local disk and an I/O buffer of 512 kB in
combination with a threshold for storing two-electron integrals of
A 1:0� 10�6 and B 1:0� 10�8, and C for one in-core case with a
memory for storing integrals set to 900 MB per node. All numbers
refer to calculations with the cc-pVTZ basis

Nodes Static Dynamic

A B C A B C

1 1.0a 1.0b 1.0c 1.0d 1.0e 1.0f

2 2.0 2.1 2.0 2.0 2.0 2.0
4 4.2 4.4 4.1 4.4 4.3 4.1
8 8.9 9.7 8.5 9.5 9.7 8.4
16 22.9 20.2 16.3 24.4 25.3 17.7
24 29.3 30.2 24.4 33.1 35.8 26.9
32 37.5 40.1 31.9 47.2 48.0 39.3
48 61.1 62.6 48.1 85.3 82.6 60.6
63 69.4 67.5 58.7 98.9 103.9 93.4

aElapse time 84703 s
bElapse time 84420 s
cElapse time 86430 s
dElapse time 85114 s
eElapse time 85227 s
fElapse time 86695 s

1 Efficiency per node is defined as t1
tnn

� �1
n
.

161



as possible. This reduces the idle time of the nodes by
up to 1 order of magnitude. The other extreme would
be to take a task as large as possible. Our experience
with the latter was that the performance difference
between the static and dynamic load balancing was
minimal. A possible reason for this is that the first
approach truncates the local integral file of the node
losing the task from the end, minimizing the number of
lost tasks compared to the second approach in which
the local integral file is truncated several tasks away
from the end of the file.

The performance of the two on-disk and the in-core
semidirect SCF are compared in Tables 1 and 2 and
Fig 5, the latter two using the dynamic load balancing
approach. First we note that the superlinear scaling for
the semidirect SCF with the smaller cc-pVDZ basis set
breaks down in a way similar to that of the fully direct

SCF. No significant difference is noted between the
on-disk or in-core semi-direct approaches. The break-
down is explained by the fact that the size of the
problem in relation to the number of nodes is simply
too small to generate a set of tasks which are large
enough to allow for efficient load balancing. This is
clearly not the case yet for the calculations with the
larger basis set. In particular we note excellent super-
linear scaling over the whole range of nodes, a speedup
of 103.9 on 63 nodes corresponding to a parallel effi-
ciency of 100.8% per node. We also note that for both
basis sets that the in-core algorithm ultimately breaks
through and becomes the fastest and most efficient
approach. For the smaller basis set the in-core
approach is definitely most appropriate, while for
the larger basis set the limitations in integral storage
(disk-based 2000 MB, while in-core 900 MB) makes a

Fig. 5. Relative speedup versus number of
nodes for two semidirect SCF calculations
with different integral thresholds for writing
to disk, a semidirect in-core SCF calculation
and a direct SCF calculation on the C24

molecule using a a cc-pVDZ basis and
b a cc-pVTZ basis

162



difference. Nevertheless, following the trend displayed
in Fig. 5 it is evident that the in-core version will also
here ultimately become the most efficient approach as
the number of nodes is increased further. Furthermore,
we note that the semidirect approach is always more
efficient than the fully direct approach. In our imple-
mentation only the Fock build is presently parallelized.
According to Amdahl’s law the speedup of the total
time deteriorates substantially beyond a certain number
of nodes. For example, for semi-direct disk-bound
calculations using the cc-pVTZ basis and an integral
threshold of 1:0� 10�8 speedups of 103.9 and 75.4
were measured on 63 nodes for the Fock build and the
total SCF calculation, respectively. Nevertheless, in
spite of Amdahl’s law also for the total times of the
SCF calculations the measured speedup is still super-
linear.

Finally we compare the in-core semidirect SCF
implementation implementation with static and dy-
namic load balancing (Tables 1 and 2, and Fig. 6). The
data show that for the smaller basis set improvement
of the parallelization requires the modification of other
parts of the SCF algorithm than the Fock build (to
overcome Amdahl’s law). For the larger basis set,
however, the test calculations underline the importance
of the in-core implementation but indicate that dis-
tributed nodes with large memory capacity are required
to bring the in-core approach clearly above linear
scaling.

4 Summary

A parallel semidirect SCF implementation with scal-
able I/O potential has been presented. In particular the
issue of achieving load balancing on a massive parallel
processing system during the I/O-intensive SCF itera-
tions was addressed. A strategy in which some integral
batches are recomputed during these iterations was
suggested to improve the load balance and to reduce
the overall wall clock for the application. The perfor-

mance of the implementation was investigated by test
calculations on the C24 fullerene. These tests show
superlinear scaling for semidirect parallel SCF calcula-
tions with the two-electron integrals stored on disk and
in-core semi-direct parallel SCF calculations. The latter
is particularly useful in the context of shared memory
parallel machines without scalable I/O. In comparison
to earlier semidirect SCF algorithms with static load
balancing during subsequent iteration steps a consid-
erable improvement in the performance was observed
by virtue of the new approach focusing on dynamic
load balancing in all iterations.

Acknowledgement. We thank J. Nieplocha for valuable help and
making the toolkit (including ChemIO) available to us. R.L.
acknowledges the Intelligent Modeling Laboratory and the Uni-
versity of Tokyo for financial support during his stay in Japan.

References

1. Nieplocha J, Harrison RJ, Littlefield RJ (1994) Proc Super-
comput 340

2. Nieplocha J, Harrison RJ, Littlefield RJ (1996) J Supercomp 10:
197

3. Bernholdt DE, Apra E, Fruchtl HA, Guest MF, Harrison RJ,
Kendall RA, Kutteh RA, Long X, Nicholas JB, Nichols JA,
Taylor HL, Fann GI, Littlefield RJ, Nieplocha J (1995) Int J
Quantum Chem Symp 29: 475

4. Schütz M, Lindh R (1997)Theor Chem Acc 95: 13
5. Dachsel H, Lischka H, Shepard R, Neiplocha J, Harrison RJ

(1997) J Chem Phys 18: 430
6. Werner H.-J Knowles PJ MOLPRO (a package of ab initio

programs) with contributions from Amos RD, Bernhardsson A,
Berning A, Celani P, Cooper DL, Deegan MJO, Dobbyn AJ,
Eckert F, Hampel C, Hetzer G, Korona T, Lindh R, Lloyd
AW, McNicholas SJ, Manby FR, Meyer W, Mura ME,
Nicklass A, Palmieri P, Pitzer R, Rauhut G, Schütz M, Stoll
H, Stone AJ, Tarroni R, Thorsteinsson T

7. Andersson K, Barysz M, Bernhardsson A, Blomberg MRA,
Carissan Y, Cooper DL, Fleig T, Fülscher MP, Gagliardi L,
de Graaf C, Hess BA, Karlström G, Lindh R, Malmqvist P-Å,

Fig. 6. Relative speedup versus number of
nodes for semidirect in-core parallel SCF for
the static and dynamic load balancing as
experienced in calculations on the C24 mole-
cule using a cc-pVDZ and a cc-pVTZ basis

163



Neogrády P, Olsen J, Roos BO, SChimmelpfenning B, Schütz
M, Seijo L, Serrano-Andrés L, Siegbahn PEM, Stålring J,
Thorsteinsson T, Veryazoy V, Wierzbowska M, Widmark PO
(2001) MOLCAS version 5. 2. University of Lund, Lund,
Sweden

8. Nieplocha J, Foster I, Kendall RA (1998) Int J Supercomp App
High Perf Comput 12: 345

9. Almlöf J, Faegri K, Korsell K (1982) J Comput Chem 16: 1291
10. Almlöf J, Taylor PR (1984) In: Dykstra CE (Ed.) Advanced

theories and computational approaches to the electronic struc-
tures of molecules. Kluwer, Dordrecht, p 107

11. Häser M, Ahlrichs R (1989) J Comput Chem 10: 104
12. Cornell Theory Center Press Release. http://www.tc.cor-

nell.edu/er/media/1996/collaborate.html
13. Dritz K, Minkoff M, Shepard R, Tilson JL, Wagner AF http://

www-fp.mcs.anl.gov/grand-challenges/chem/nondirect/index.
html

14. Lindh R, Ryu U, Liu B (1991) J Chem Phys 95: 5889
15. Shepard R (1993) Theor Chim Acta 84: 343
16. Wong AT, Harrison RJ (1995) J Comput Chem 16: 1291
17. Fischer TH, Almlöf J (1992) J Phys Chem 96: 9768
18. Davidson ER (1975) J Chem Phys 62: 400
19. Taylor PR (1992) In: Roos BO (Ed.) Lecture notes in quantum

chemistry – European summer school in quantum chemistry.
Springer, Berlin Heidelberg New York, p 89

20. Lindh R (1993) Theor Chim Acta 85: 423
21. Bernhardsson A, Lindh R, Olsen J, Fülscher M (1999) mol Phys

96: 617
22. Kendall RA, Harrison RJ (1991) Theor Chim Acta 79: 337
23. Dunning TH Jr (1989) J Chem Phys 90: 1007
24. LUNARC at Lund University http://www.lunarc.lu.se

164


